Biological potential of nanomaterials strongly depends on the suspension media: experimental data on the effects of fullerene C60 on membranes
Drašler B, Drobne D, Poklar Ulrih N, Ota A [ pdf ] [ site ] Protoplasma, 2015
Fullerenes (C60) are some of the most promising carbon nanomaterials to be used for medical applications as drug delivery agents. Computational and experimental studies have proposed their ability to enter cells by penetrating lipid bilayers. The aim of our study was to provide experimental evidence on whether pristine C60 in physiological media could penetrate cell membranes. The effect was tested on phospholipid vesicles (liposomes) composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, and validated on isolated human red blood cells (RBCs). We incubated the liposomes in an aqueous suspension of C60 and dissolved the lipids and C60 together in chloroform and subsequently formatted the liposomes.
By differential scanning calorimetry measurements, we assessed the effect of C60 on the phospholipid thermal profile. The latter was not affected after the incubation of liposomes in the C60 suspension; also, a shape transformation of RBCs did not occur. Differently, by dispersing both C60 and the phospholipids in chloroform, we confirmed the possible interaction of C60 with the bilayer. We provide experimental data suggesting that the suspension medium is an important factor in determining the C60-membrane interaction, which is not always included in computational studies. Since the primary particle size is not the only crucial parameter in C60– membrane interactions, it is important to determine the most relevant characteristics of their effects on membranes.